
Articles
eBioMedicine
2023;93: 104647

Published Online xxx

https://doi.org/10.
1016/j.ebiom.2023.
104647
Dissecting shared genetic architecture between obesity and
multiple sclerosis
Ruijie Zeng,a,k Rui Jiang,a,b,c,k Wentao Huang,a,b,k Jiaxuan Wang,a,k Lijun Zhang,a,c Yuying Ma,a,b Yanjun Wu,a,b Meijun Meng,a,d Hekui Lan,e

Qizhou Lian,f ,g,h Felix W. Leung,i,j,∗ Weihong Sha,a,b,c,d,∗∗ and Hao Chena,b,c,d,∗∗∗

aDepartment of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern
Medical University, Guangzhou 510080, China
bThe Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
cSchool of Medicine, South China University of Technology, Guangzhou 510006, China
dGuangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern
Medical University, Guangzhou 510080, China
eDepartment of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, China
fFaculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
gCord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou, China
hState Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
iDavid Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
jSepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, CA, USA

Summary
Background Observational studies have associated obesity with an increased risk of multiple sclerosis (MS). However,
the role of genetic factors in their comorbidity remains largely unknown. Our study aimed to investigate the shared
genetic architecture underlying obesity and MS.

Methods By leveraging data from genome-wide association studies, we investigated the genetic correlation of body
mass index (BMI) and MS by linkage disequilibrium score regression and genetic covariance analyser. The
casualty was identified by bidirectional Mendelian randomisation. Linkage disequilibrium score regression in
specifically expressed genes and multimarker analysis of GenoMic annotation was utilised to explore single-
nucleotide polymorphism (SNP) enrichment at the tissue and cell-type levels. Shared risk SNPs were derived
using cross-trait meta-analyses and Heritability Estimation from Summary Statistics. We explored the potential
functional genes using summary-data-based Mendelian randomization (SMR). The expression profiles of the risk
gene in tissues were further examined.

Findings We found a significantly positive genetic correlation between BMI and MS, and the causal association of
BMI with MS was supported (β = 0.22, P = 8.03E-05). Cross-trait analysis yielded 39 shared risk SNPs, and the risk
gene GGNBP2 was consistently identified in SMR. We observed tissue-specific level SNP heritability enrichment for
BMI mainly in brain tissues for MS in immune-related tissues, and cell-type-specific level SNP heritability
enrichment in 12 different immune cell types in brain, spleen, lung, and whole blood. The expressions of
GGNBP2 were significantly altered in the tissues of patients with obesity or MS compared to those of control subjects.

Interpretation Our study indicates the genetic correlation and shared risk genes between obesity and MS. These
findings provide insights into the potential mechanisms behind their comorbidity and the future development of
therapeutics.
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Research in context

Evidence before this study
Several observational studies have revealed that children with
a higher body mass index (BMI) are associated with a higher
risk of developing multiple sclerosis (MS) in later life.
However, the role of genetic factors in their comorbidity
remains largely unknown.

Added value of this study
In this study, by leveraging data from genome-wide
association studies, we found significant genetic correlation
and identified shared risk SNPs between BMI and MS. We
further identified a putative functional gene shared between

obesity and MS. These findings could provide insights into the
shared genetic architecture between obesity and MS.

Implications of all the available evidence
Our study highlights the importance of early detection and
prevention of neurodegenerative disorders, including MS,
amongst overweight and obese people. New therapeutics for
the two diseases could be explored, and it is promising to
develop modalities targeting both diseases based on their
shared genetic architecture. Moreover, our findings might
provide new understandings for the pathogenesis of the two
diseases, and inspire future research to keep digging into their
comorbidity.
Introduction
Obesity is a growing health and economic issue.1,2 It is
often comorbid with a wide range of conditions, including
neurodegenerative disorders.3,4 In recent years, growing
evidence from observational studies has illustrated the
associations between obesity and multiple sclerosis (MS).
MS is a debilitating chronic demyelinating and neurode-
generative disease of the central nervous system, and leads
to an impaired quality of life and disability.5

Several observational studies have revealed that chil-
dren with a higher body mass index (BMI) have a higher
risk of developing MS later in life.6–8 Amongst children
with obesity, a 101% higher risk of developing MS
compared to normal-weight children was revealed by a
meta-analysis.9 In addition, previous Mendelian random-
isation (MR) studies have indicated the potential causal
effect of BMI on MS.10–13 These epidemiological studies
provide hints of shared genetic risk components between
obesity and MS. However, more updated data are needed
to evaluate their causality, and the shared genetic archi-
tecture between obesity and MS remains largely unknown.

Understanding the causality and biology underlying
this association is important for deciphering the aetiology
of MS and can potentially provide therapeutic insights.
Several mechanisms have been proposed. Studies suggest
that obesity aggravates central inflammation and disability
in multiple sclerosis.14,15 Alterations in hormones and gut
microbiota in patients with obesity might also account for
the development of MS.16–18 Clearly, it is still very chal-
lenging to obtain a full picture of this complex link.
Studying the shared genetic risk components could
potentially provide a unique perspective in this direction.

Here, using large-scale genome-wide association
study (GWAS) summary statistics (Fig. 1), we aimed to
investigate the genetic correlation, causal association, and
shared risk loci with potential functions between obesity
and MS, to provide insights into their comorbidity.
Methods
Datasets
GWAS summary statistics
Effect estimates for SNPs associated with BMI, which
was calculated by weight and height information of
included participants, were obtained from the GWAS
meta-analysis by the Genetic Investigation of Anthro-
pometric Traits (GIANT) consortium, which involved
2.4 million HapMap 2 SNPs from approximately 0.7
million participants.19 GWAS summary results for MS
were derived from the meta-analysis by the International
MS Genetics Consortium (IMSGC), which included 15
datasets involving 26,703 controls and 14,802 MS cases
of European ancestry, and the diagnostic criteria had
been reported in each included studies.20 The collection
of samples, quality control, and imputation methods for
each study have been previously described.19,20

Bulk-tissue RNA sequencing gene expression data
In the subsequent linkage disequilibrium score regres-
sion (LDSC)-specifically expressed genes (SEG) and
www.thelancet.com Vol 93 July, 2023

http://creativecommons.org/licenses/by-nc-nd/4.0/
www.thelancet.com/digital-health


Fig. 1: Overview of statistical analyses performed in the study. CPASSOC: Cross Phenotype Association; GNOVA: Genetic covariance analyser;
GSMR: Generalised summary-data-based Mendelian randomisation; GWAS: Genome-wide Association Study; LD: linkage disequilibrium;
MAGMA: Multi-marker Analysis of GenoMic Annotation; MTAG: Multi-Trait Analysis of GWAS; MR: Mendelian Randomisation; ρ-HESS: Her-
itability Estimation from Summary Statistics; scRNA-seq: single-cell RNA sequencing; SMR: Summary-databased Mendelian randomisation.
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summary-data-based Mendelian randomisation (SMR)
analysis, we obtained bulk-tissue RNA-seq gene
expression data from the Genotype-Tissue Expression
(GTEx) project, which is a public data resource of gene
expression in 53 nondiseased human primary tissues.21

We download the GTEx v6p dataset, which has been
fixed.22 We then chose the lite version of the GTEx V8
expression quantitative trait locus (eQTL) summary data
(P < 1 × 10−5). cis-eQTL summary statistics for whole
blood were downloaded for the downstream analysis
from eQTLGen, a meta-analysis of 14,115 individuals.23

Single-cell RNA sequencing gene expression data
We obtained four single-cell RNA sequencing (scRNA-
seq) resources from human lung (N = 57,020 cells),
spleen (N = 94,257 cells), and whole blood from 10X
Genomics Chromium and mouse brain
(N = 133,509,876 cells).24,25 The “EWCE” R package was
utilised to process the scRNA-seq data and convert
mouse genes to human gene symbols.26

Statistical analyses
Heritability and genetic correlation
LDSC is a useful method to estimate the genetic cor-
relation for multiple traits or diseases.27 Based on the
precomputed LD scores of the 1000 Genomes projects,
which were calculated for SNPs in the HapMap 3 SNP
set, we removed SNPs that did not match the reference
panel (MAF ≤ 0.01 or INFO score ≤ 0.9) and refor-
matted new GWAS summary statistics.28 We estimated
single-trait SNP heritability for BMI and MS using
stratified linkage disequilibrium score regression
(SLDSC) with the baseline-LD model. According to the
recommendation, we set the population prevalence and
www.thelancet.com Vol 93 July, 2023
observed sample prevalence as 0.0003 and 0.63,
respectively, to convert observed scale heritability to the
liability scale. Then we performed bivariate LDSC
without constraining the intercept to estimate the rg
value, representing genetic correlations between MS
and BMI, and selected the suggestive (P < 0.05) genetic
associations as the significant correlation.29,30 Sensitivity
analyses were conducted based on LDSC with the
single-trait heritability intercept constrained. Because
there was no sample overlap in our two traits, we set all
single-trait intercepts to 1 and all cross-trait intercepts
to 0.

Genetic covariance analyser (GNOVA) was supple-
mented to estimate the SNP-based heritability and ge-
netic correlation between BMI and MS.31 GNOVA
estimates genetic covariance based on all genetic vari-
ants shared between two GWAS summary statistics.
Genetic correlations were then calculated based on
variant heritability and genetic covariance. Calculations
were based on the 1000 Genomes Project’s European
population-derived reference data using default param-
eters. In addition, sample overlap correction between
two different sets of GWAS summary statistics was
statistically calculated. Compared to LDSC, GNOVA
provides higher estimation accuracy for genetic corre-
lations and more powerful statistical inference.31

Cross-trait meta-analysis
To detect the shared risk SNPs in BMI and MS, we
performed two cross-trait meta-analyses, including
multi-trait analysis of GWAS (MTAG) and cross-
phenotype association test (CPASSOC).32–34 MTAG is a
generalised meta-analysis method that enhances statis-
tical power to estimate the genotypic and phenotypic
3
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variance-covariance matrices to generate trait-specific
estimates for each SNP. SNPs were restricted with a
minor allele frequency (MAF) ≥ 0.01 and sample size
N ≥ (2/3) × 90th percentile. MTAG adjusts for possible
errors by using bivariate LD score regression when
sample overlap is present. MTAG is suitable when all
variants have the same effect sizes on traits and generate
trait-specific association statistics. We calculated the
upper bound for the false discovery rate (‘maxFDR’) to
examine the assumptions on the equal variance-
covariance. In addition, as a sensitivity analysis, CPAS-
SOC integrates association evidence from multiple
traits’ GWAS summary statistics when the variant is
correlated to at least one trait. We utilised the SHet
version to assume heterogeneous effects across traits.
The SNP set was obtained by applying pairwise LD
pruning with r2 = 0.2 using the software “PLINK”. We
prioritised independent SNPs that were genome-wide
significant (P < 5 × 10−8) in the cross-trait meta-ana-
lyses using both MTAG and CPASSOC and were in
significant regions identified by ρ-HESS.

Identification of local genetic correlations
Heritability Estimation from Summary Statistics
(ρ-HESS) is a method to estimate local SNP-heritability
and genetic correlation.35 We estimated the local genetic
correlations to examine whether BMI shared genetic
correlation with MS at the local independent region in
the genome using ρ-HESS. There were 1699 potential
regions that were approximately LD-independent loci,
with an average size of nearly 1.5 MB.36 Then we calcu-
lated the local SNP heritability for two traits and the ge-
netic correlation between two traits using the 1000
Genomes Project as the reference provided on the
ρ-HESS webpage. The pairwise GWAS (GWAS-PW)
method was also used to examine shared genomic re-
gions by BMI and MS.37 GWAS-PW can provide esti-
mations of the posterior probability for the locus shared
by both traits (PPA3), or the locus associated with both
traits but by distinct causal variants (PPA4). The
threshold of PPA3/4 > 0.8 was used in our models.

Mendelian randomisation
To explore putative causal relationships between BMI
and MS, the R packages “TwoSampleMR” and “GSMR”
were used for suggestive associations (P < 0.05). We
undertook Mendelian randomisation analysis, mainly
including five MR methods, MR-Egger, inverse variance
weighting (IVW), weighted median, weighted mode,
and generalised summary-data-based Mendelian ran-
domisation (GSMR) with different assumptions about
horizontal pleiotropy.38–41 Briefly, when there is one
single genetic variant, the Wald ratio is used to calculate
the causative effect between the exposure and the
outcome. Using the meta-analysis approach, IVW anal-
ysis can estimate the causal effects of two phenotypes.
The MR-Egger method further added a weighted linear
regression of the gene–outcome coefficients for non-
measured horizontal pleiotropy, which allows for the
presence of directional uncorrelated pleiotropy. The
pleiotropy test and heterogeneity test were conducted by
the MR-Egger intercept test and Cochran’s Q statistic.
We used single SNP effect analysis and MR-PRESSO
analysis to detect pleiotropy and outliers.42 The vari-
ants were mainly selected based on three assumptions:
(1) they are correlated with the exposure; (2) they are not
dependant on confounding factors; and (3) they do not
directly generate effects on the outcome. For these five
methods, we selected SNPs with genome-wide signifi-
cance (P ≤ 5 × 10−8) of the exposure trait as instrumental
variables. F statistics for each instrument were esti-
mated by F = β2/SE2, and an F statistic < 10 was
regarded as insufficiently informative for further anal-
ysis.43 The study power (at α = 0.05) was calculated to
illustrate a causal effect depending on the percentage of
risk factor variance accounted for by instruments.44 The
heterogeneity Q statistics were calculated, and the leave-
one-out method was used as the sensitivity analysis.

LDSC-SEG analysis
We performed LDSC-SEG to investigate whether SNP
heritability for BMI and MS is evident for trait-tissue
relevance inference.45 The 1000 Genomes Phase 3 of
European ancestry was utilised as a reference panel to
calculate LD scores, and SNPs only in HapMap 3 with
MAF > 0.05 were included as input. Based on the
baseline model and all gene sets, we ranked genes from
the GTEx project by computed t-statistics reflecting
critical tissue types and their specific expression in 53
tissues. We obtained the top 10% of specifically
expressed candidate genes with the highest t-statistic to
estimate the significance of tissue type-specific SNP
heritability enrichment. The coefficient P values were
calculated based on the regression coefficient Z score,
and the Benjamini-Hochberg FDR-corrected P value of
< 5 × 10−3 was determined as significant for enrichment
tissues across the two traits.

Cell type enrichment analyses using scRNA-seq datasets
We conducted Multimarker Analysis of GenoMic
Annotation (MAGMA) cell typing to evaluate the gene-
level genetic correlation between BMI and MS GWAS
traits and cell type expression specificity.46 Cell types
across the four tissues were considered significant in
MAGMA with a P value < 0.05. The cell type specificity
matrix for scRNA-seq used in MAGMA was calculated
using Expression Weighted Cell Type Enrichment,
“EWCE” and the “MAGMA_Celltyping” R package.47

Summary-data-based Mendelian randomization
We conducted SMR analysis to identify candidate risk
genes with possible causal effects and SNPs significant
in cross-trait meta-analyses of BMI and MS.48 We used
GWAS and eQTL data to detect the association between
www.thelancet.com Vol 93 July, 2023
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trait-associated SNPs and gene expression. The hetero-
geneity in dependent instrument (HEIDI) test was
applied to distinguish linkage in the causal association.
Genomic expression data from GTEx V8 and cis-eQTL
summary data from eQTLGen were used for the eQTL
expression data of whole blood.23,49 As a default, we
removed SNPs in strong LD with an r2 > 0.9 and with
top associated eQTLs if MAF > 0.01. Expression probes
with eQTL P ≤ 5 × 10−8 were selected as the top asso-
ciated variants. All SNPs were extracted by genome-wide
complex trait analysis (GCTA) software, ensuring their
independence.50 SMR significant probes were selected
using Bonferroni-corrected thresholds for SMR P values
(0.05/number of probes) and HEIDI test P value
thresholds >0.05 to indicate the lack of heterogeneity.

Validation of expressions of the risk gene
The expression profiles of adipose tissues, brain lesions,
and peripheral blood mononuclear cells were evaluated
for the risk gene by the datasets GSE9624, GSE38010,
and GSE21942.51–53 The GSE9624 dataset involved
omental adipose tissues from obese and normal-weight
children.51 The GSE38010 dataset included histologically
characterised MS brain lesions and control brain sam-
ples.52 The GSE21942 dataset contained peripheral
blood mononuclear cells from MS patients and con-
trols.53 The Mann–Whitney U test was used to evaluate
the differences in gene expression between the diseased
group and the control group. Analyses of the data were
performed using R version 4.1.0 (R Project for Statistical
Computing, Vienna, Austria), Python 2.7 (Python Soft-
ware Foundation, Wilmington, US), or GraphPad Prism
8.0 (GraphPad Software, San Diego, US).

Ethics
Since the included studies had been approved by their
independent review boards, additional ethical approval
is not required in our study based on summary-level
data.

Role of funders
Funders had no role in the in the study design, data
collection, data formal analysis nor interpretation or
writing of the report.
Results
Estimation of genetic correlations between obesity
and MS
We used bivariate LDSC to estimate the genetic corre-
lation (without constrained intercept) between BMI and
MS (rg = 0.08, P = 3.45 × 10−8, LDSC, Supplementary
Fig. S1 and Table S1). The liability-scale SNP heritabil-
ity estimates were 21.2% and 4.6% for the BMI and MS
traits, respectively. The intercept of genetic covariance
was calculated at approximately 0.01, indicating mild
sample overlapping between BMI and MS. After
www.thelancet.com Vol 93 July, 2023
constraining the LDSC intercept on the assumption of
no sample overlap, the genetic correlation was slightly
weaker but remained significant (Supplementary Fig. S1
and Table S1). Analyses by GNOVA also demonstrated a
positive and consistent genetic association between BMI
and MS (Supplementary Table S1).

Identification of genomic risk regions for BMI and
MS
Given the strong genetic relationships between BMI and
MS, we conducted MTAG to improve our power to
identify genetic SNPs shared between traits. A total of
39 genome-wide significant SNPs (P < 5 × 10−8) were
revealed in both MTAG and CPASSOC (Supplementary
Table S2), including 18 newly identified shared SNPs
(rs11647753, rs11649612, rs12716972, rs12716974,
rs2289292, rs3809624, rs4407979, rs4609871,
rs2306589, rs2306593, rs8070260, rs8882, rs9906189,
rs1044821, rs11667487, rs2302299, rs4808762,
rs8112975). The maxFDR values for MTAG analyses of
BMI and MS were 1.4 × 10−6 and 1.8 × 10−2 respectively.
Furthermore, the MTAG results were highly consistent
with those generated by CPASSOC, indicating that the
MTAG results are reliable and that bias in MTAG as-
sumptions is likely to be negligible. Eventually, 13 risk
SNPs were found to be consistently significant when
examined by ρ-HESS, and the shared loci were verified
by GWAS-PW (PPA4 > 0.8, Supplementary Table S3).

The local genetic correlation was estimated, and 57
suggestively significant regions were identified
(P < 0.05, ρ-HESS, Supplementary Table S4). There was
close agreement in the average local genetic correlation
in regions harbouring BMI-specific loci or MS-specific
loci (Fig. 2a and b and Supplementary Fig. S2). We
estimated the local single-trait SNP heritability for BMI
(h2 = 22.4%) and MS (h2 = 23.5%) (Table 1). Compared
with bivariate LDSC, genome-wide local genetic corre-
lations calculated by ρ-HESS between MS and BMI
(rg = 0.0428) were all largely consistent (Table 1).

Evidence for causality between BMI and MS
We conducted bidirectional MR to explore the potential
causal effect and whether the shared genetic background
between BMI and MS was consistent with pleiotropy. The
IVs were selected after evaluation based on the three
assumptions (Supplementary Table S5). The F statistics
for the instrumental variables ranged from 28.6 to
1360.3, indicating that the probability of weak instrument
bias was low. We conducted various bi-directional MR
methods to test the stability of relationships for a more
stable result. We found evidence to support the causality
of BMI on MS in five methods (IVW β = 0.22, SE = 0.06,
P = 8.03E-05; GSMR β = 0.32, SE = 0.05, P = 6.15E-13;
Fig. 3 and Supplementary Fig. S3 and Table S6) with no
significant evidence of heterogeneity (IVW Q = 356.49,
P = 0.99, Supplementary Table S6). The leave-one-out
analysis indicated the effect was not driven by any
5
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Fig. 2: Local genetic correlations (rg) between BMI and MS. (a) Average local rg estimates for two traits in regions harbouring disease-specific
risk variants, regions harbouring shared risk variants (“intersection”), and all other regions (“neither”). Local genetic correlations with estimates
less than −1 or greater than 1 were forced to −1 or 1, respectively. Error bars represent the 95% confidence intervals (CIs), which were calculated
using a jackknife method. (b) Density distribution of local rg estimates for two traits in disease-specific regions (red, green), intersection regions
(blue) and other (purple) regions. BMI, body mass index; MS, multiple sclerosis.
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single SNP (Supplementary Fig. S4a). The estimated
power to detect a causal effect for BMI on MS was
100.0%. In the reverse analyses, all these methods except
GSMR identified a nonsignificant causal effect of MS on
BMI (IVW β = 4.47E-03, SE = 4.23E-03, P = 0.29; GSMR
β = 0.04, SE = 0.01, P = 1.32E-3; Supplementary
Table S6). The leave-one-out analysis was shown in
Supplementary Fig. S4b.

Tissue-level SNP heritability enrichment in BMI and
MS
To identify in which tissue these shared SNPs take ef-
fect, we used the LDSC-SEG method to identify specific
tissues in which genes with increased expression were
enriched in SNPs, using publicly available GWAS data
Method Body
mass
index

Multiple
sclerosis

Heritability h2 LDSC 0.2119 0.0457

Heritability h2 GNOVA 0.1885 0.1385

Heritability h2 ρ-HESS 0.2240 0.2350

Genetic correlation rg LDSC 0.0796

Genetic correlation rg GNOVA 0.0647

Genetic correlation rg ρ-HESS 0.0428

LD: linkage disequilibrium. GNOVA: Genetic covariance analyser; ρ-HESS:
Heritability Estimation from Summary Statistics.

Table 1: Heritability and genetic correlation between body mass index
and multiple sclerosis.
and genotype tissue expression data from GTEx. After
adjusting for the baseline model, we identified FDR-
significant (P < 5 × 10−3, LDSC-SEG) SNP heritability
enrichment for BMI across 9 tissues (Fig. 4a and
Supplementary Table S7), particularly for central ner-
vous system (CNS)-related tissues, including the frontal
cortex, anterior cingulate cortex, nucleus accumbens,
putamen, caudate, hypothalamus, cerebellar hemi-
sphere, cerebellum, and cortex. For MS, a total of 4
tissues were significantly enriched, particularly for
blood and immune-related tissues, including the spleen
and Epstein–Barr virus (EBV)-transformed lympho-
blastoid cell lines (LCLs) (Fig. 4b and Supplementary
Table S7).

Cell-level SNP heritability enrichment in BMI and
MS
We utilised publicly available scRNA-seq datasets of four
tissues enriched in LDSC-SEG, including brain, spleen,
lung, and whole blood, to evaluate the gene-level genetic
association with cell type expression specificity for BMI
and MS. In the lung dataset, we found significant
enrichment at P < 0.05 (MAGMA) for both BMI and MS
in mature B cells, naive B cells, mast cells, natural killer
(NK) cells, dividing NK cells, CD4+ T cells, CD8+ cyto-
toxic T lymphocytes, dividing T cells, regulatory T cells,
activated dendritic (DC) cells, plasmacytoid DC cells,
and monocytes. We observed a significant enrichment
across NK_FCGR3Apos in spleen tissue. Cells in the
brain and in peripheral blood mononuclear cell (PBMC)
tissues were not coenriched in BMI and MS traits. The
www.thelancet.com Vol 93 July, 2023
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Fig. 3: Summary of bi-directional MR analyses between BMI and MS. BMI, body mass index; GSMR: Generalised summary-data-based
Mendelian randomisation; IVW: inverse variance weighting; MS, multiple sclerosis. Error bars represent the 95% confidence intervals for the
associated MR estimates.
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enriched cells in four tissues for BMI and MS are listed
separately (Supplementary Figs. S5–S8).

Identification of shared functional genes for BMI
and MS
We applied SMR to infer causality and identify the pu-
tative functional genes for BMI and MS, by jointly
analysing GWAS summary data and whole blood eQTL
summary data from eQTLGen and GTEx. We identified
12 shared risk genes, including FAM213B, GGNBP2,
HLA-B, HLA-C, MAST3, MICB, MYO19, PRXL2B,
TBX6, TNFRSF14, TRAF3, and ZNHIT3, of which only
Fig. 4: Tissue type-specific enrichment of SNP heritability for BMI and
tissues for BMI; (b) The heritability enrichment of tissues for MS. The x
individual test. BMI, body mass index; MS, multiple sclerosis; SNP, singl
regression applied to specifically expressed genes.

www.thelancet.com Vol 93 July, 2023
one gene, GGNBP2, was shared between BMI
(PSMR = 3.69 × 10−19, PHEIDI = 0.11, topSNP:
rs11263770) and MS (PSMR = 2.41 × 10−7, PHEIDI = 0.98,
topSNP: rs11650008) and passed the HEIDI-outlier test
in cis_eQTL data (Supplementary Table S8). More
importantly, GGNBP2 was also identified as one of the
genetically shared variants in previous cross-trait meta-
analysis phenotypes between BMI and MS.

Differential expressions of GGNBP2
The mRNA expressions of GGNBP2 in tissues of pa-
tients with obesity or MS, and control subjects were
MS estimated using LDSC-SEG. (a) The heritability enrichment of
axis displays negative log10 P-values of coefficient Z-scores for each
e nucleotide polymorphism; LDSC-SEG: linkage disequilibrium score

7

www.thelancet.com/digital-health


Articles

8

further evaluated. The expression of GGNBP2 was
significantly increased in the adipose tissue of obese
individuals compared to control subjects
(Supplementary Fig. S9a, P < 0.05, unpaired t-test). In
addition, GGNBP2 expression was also enhanced in
peripheral blood nuclear cells of MS patients compared
to that in healthy controls (Supplementary Fig. S9b,
P < 0.0001, unpaired t-test). In MS brain lesions, the
expression of GGNBP2 was generally raised compared
to normal brain tissue, while studies involving more
participants are warranted to increase the statistical po-
wer (Supplementary Fig. S9c, P = 0.09, unpaired t-test).
Discussion
In this study, we present evidence of causality and
overlapping genetic architecture of BMI with MS. Our
results provide new insights into their comorbidity, and
might contribute to the prediction, diagnosis, and
treatment of diseases.

We found a significant genetic correlation between
BMI and MS, which supported the hypothesis that ge-
netic factors play an important role in the comorbidity of
obesity and MS. From the cross-trait meta-analysis, 39
SNPs were identified in both MTAG and CPASSOC
analysis, in which 13 suggestively significant SNPs were
located in the ρ-HESS-estimated significant genomic
regions. We used two different statistical analysis
methods, MTAG and CPASSOC, to reduce possible bias
caused by potential sample overlap and further explored
the risk SNPs obtained from MTAG with CPASSOC.
Our results showed that the SNPs identified by MTAG
were all consistently significant in the CPASSOC anal-
ysis, which improved the reliability of our findings. The
causality of BMI on MS was consistent with previous
studies,10,54 and the sensitivity analyses confirmed the
robustness of the findings.

In addition to the IVW methods, different statistical
methods for Mendelian randomisation analysis were
used to evaluate the robustness of our results. The MR-
Egger regression yields less biased estimates and lower
power than the IVW method.55 The weighted-median
method is able to provide effect estimates with lower
bias than the IVW method, whereas a high type 1 error
rate has been observed.56 The weighted-mode method
generally has a decreased bias and a type 1 error rate,
whereas its power to detect a causal effect is low.56 The
GSMR method utilises the generalised least-squares
approach to generate estimates, compared to the
variance–covariance matrix used by the IVW method.57

Since three of the five methods for the causal esti-
mates of BMI on MS were statistically significant, the
effect was considered robust in this study.

Functional enrichment for gene expression in mul-
tiple tissues and cells was also investigated using the
GTEx datasets. We identified 9 tissues, mainly the brain,
with significant SNP heritability enrichment for the
BMI trait. Growing evidence also suggests that suscep-
tibility to obesity is distributed across multiple brain
regions and is strongly associated with structural
abnormalities.58–60 The enrichment results of the MS
trait were mainly reflected in immune tissues, including
the spleen and LCLs, which suggests the involvement of
local immune responses in the development of MS.
This is consistent with previous literature demon-
strating a strong relationship between MS and immune
dysregulation.61 EBV-infected B cells and plasma cells
that accumulate in meningeal immune cell collections
may contribute to the progressive development of MS.62

The lung could contribute to the activation and trans-
formation of autoreactive T cells to a migratory mode,
which allows them to enter the CNS and induce auto-
immune conditions, including MS.63 Our findings pro-
vide evidence to support the involvement of immune
responses in MS, and further experimental validation of
the enriched tissues and cells is warranted.

Notably, we identified SNP heritability enrichments in
different immune cells in the lung and spleen for both
BMI and MS. MS is an immunologically heterogeneous
disorder, and CD8+ T cells predominate in MS lesions.64

B-cell depletion may reduce the proinflammatory cyto-
kines produced by B cells, CD4+ and CD8+ T cells, which
can effectively reduce MS relapses.65,66 B cells interact
with T helper cells to create a feedforward loop, and the
highly pathogenic subsets enter the blood-CNS barriers,
which can lead to MS pathological changes.67 NK and DC
cells control T-cell activation in CNS autoimmunity, and
reduce the risk of MS.68,69 Mast cells participate in the
pathogenesis of MS by promoting angiogenesis.70 Our
results may provide insights into the pathogenesis of
obesity and MS, and the development of therapeutics
targeting specific tissues and cell types.

In addition to cross-trait meta-analysis, we also used
blood and tissue eQTL data to evaluate whether the
BMI-MS association can be mediated by shared risk
genes. Amongst the shared risk genes we identified,
human leukocyte antigen (HLA) class genes have been
identified to recruit macrophages into adipose tissues.71

In addition, the primary function of HLA class genes is
antigen presentation to T cells, which is involved in
CNS-directed autoimmunity and MS development.72

Striking interactions of BMI and HLA genotype with
the risk of MS have been observed, which confirms our
findings.73 Using SMR and HEIDI, we discovered that
GGNBP2 might serve as another potential link between
the two traits, and transcriptomic analyses using patient
samples verified our findings. Prior studies have docu-
mented the biological relationship between GGNBP2
and BMI. GGNBP2 is a tumour suppressor gene
involved in several types of cancer, such as glioma,74

breast cancer,75 and prostate cancer.76 GGNBP2 is also
a shared gene for ALS and obesity-related traits.77

Further investigations into the mechanisms of
GGNBP2 on obesity and MS pathogenesis are needed.
www.thelancet.com Vol 93 July, 2023
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Numerous attempts have been made to evaluate the
association between obesity and MS. Several MR studies
have revealed the causal effect of BMI on MS.10–13

However, the summary statistics used in previous
studies were relatively outdated or smaller-scale, and
previous evidence on their shared genetic basis is
scarce. The prevalence of obesity is still rising globally,
which is a great threat to public health.78 To date, no
curative treatment is available for multiple sclerosis.79

Therefore, our study highlights the importance of
early detection and prevention of neurodegenerative
disorders, including MS, amongst overweight and obese
people. New therapeutics for the two diseases could be
explored, and it is promising to develop modalities tar-
geting both diseases based on their shared genetic ar-
chitecture. Moreover, our findings might provide a new
understanding for the pathogenesis of the two diseases
and inspire future research to continues to investigate
their comorbidity. Our study could contribute to the
improvement of disease management for patients with
obesity or MS.

Caveats and limitations
Our study also has several limitations. Potential sample
overlap might exist between the GWAS datasets from
GIANT and IMSGC, both of which used samples from
the Wellcome Trust Case Control Consortium
(WTCCC) cohorts. However, this effect would be small
since the samples from the WTCCC comprised ∼2.5%
of the samples from the GIANT consortium. In addi-
tion, the results of this study were based on individuals
of European ancestry, and therefore our findings have
limited generalisability to other ancestral populations.
The initially identified shared regions did not strictly
pass the threshold after Bonferroni correction (0.05/
1699), while it was exploratory and part of the regions
could be validated by other methods, which were
considered more reliable. Moreover, based on the in-
formation from our study, further in vitro and in vivo
studies could be conducted to evaluate the function and
mechanisms of GGNBP2 in obesity and MS.

Conclusion
In summary, we found a significant genetic correlation
and identified shared risk SNPs between BMI and MS.
We further identified a putative functional gene,
GGNBP2, shared between obesity and MS. These find-
ings could provide insights into the shared genetic ar-
chitecture between obesity and MS, and contribute to a
better understanding of their pathogenesis as well as the
development of therapeutics.
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